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MD2 blockage prevents the migration and invasion of 
hepatocellular carcinoma cells via inhibition of the EGFR signaling 
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Background: The toll-like receptor (TLR) is an emerging signaling pathway in tumor invasion and 
metastasis. The activation of TLRs requires specific accessory proteins, such as the small secreted 
glycoprotein myeloid differentiation protein 2 (MD2), which contributes to ligand responsiveness. 
However, the role of MD2 in tumorigenesis and metastasis has rarely been reported. This study aimed to 
investigate the effects and underlying mechanisms of MD2 on the proliferation, migration, and invasion of 
hepatocellular carcinoma (HCC).
Methods: Cell counting kit 8 (CCK8), cell colony formation, wound healing, and transwell assays were 
conducted to determine cell viability, proliferation, migration, and invasion, respectively. Quantitative real-
time PCR (qRT-PCR) was performed to assess the expression of MD2 in HCC cell lines and human normal 
liver cell lines as well as the silencing efficiency of MD2 blockage. Western blot and qRT-PCR assays were 
performed to detect the protein and mRNA expression levels of epithelial mesenchymal transformation 
(EMT) markers and epidermal growth factor receptor (EGFR) signaling molecules.
Results: MD2 was highly expressed in HCC tissues and cell lines. High expression of MD2 was associated 
with poor prognosis of HCC patients. In addition, MD2 silencing slightly inhibited the proliferation of 
HepG2 and HCCLM3, and significantly suppressed cell migration and invasion. Furthermore, MD2 
blockage could distinctly prevent the EMT process by increasing the protein and mRNA levels of E-cadherin 
and Occludin, and decreasing the levels of Vimentin, N-cadherin, and Snail. Finally, the phosphorylation 
level of EGFR as well as its downstream molecular Src, Akt, I-κBα, and p65 were downregulated in HCC 
cells with MD2 silencing.
Conclusions: Our findings suggest that high expression of MD2 may affect the EMT, migration, and 
invasion via modulation of the EGFR pathway in HCC cells.
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Introduction

Hepatocellular carcinoma (HCC) is the fourth most 
common cause of cancer-related mortality worldwide, and 
accounts for more than 80% of all liver cancer cases (1).  
More than 70% of HCC patients experienced tumor 
progression 1 year after diagnosis due to the extensive 
invasiveness of HCC (2,3), and the 5-year survival rate 
of advanced HCC is very poor (below 15%) (4,5). Thus, 
exploring the potential therapeutic targets for HCC is 
crucial.

Myeloid differentiation protein 2 (MD2), also known as 
lymphocyte antigen 96 (LY96), is a kind of small secreted 
protein (6). As the co-receptor for toll-like receptor (TLR) 
4 and the main lipopolysaccharide (LPS)-binding module, 
MD2 is requisite for the localization of TLR4 on the cell 
surface and subsequently confers responsiveness to LPS (7,8). 
MD2 mediates the LPS-induced inflammatory and immune 
responses by forming a heterotetrametric complex with TLR4 
(9,10). The TLR4 signaling pathway is an emerging pathway 
related to tumor cell invasion and migration (11-13). TLR4 
signaling has been shown to have oncogenic effects both in 
vitro and in vivo in various cancer types, including colon (14), 
breast (15), prostate (16), skin (17), ovarian (18), cervical (19), 
and esophageal (20) cancers, as well as HCC (21).

Considering the essential role of MD2 in TLR4 
signaling activation, targeting MD2 may be a potential 
pharmacological strategy for cancer treatment. However, 
the effect of MD2 on tumor cell invasion and migration 
has been rarely studied, and no studies addressing drugs 
targeting MD2 for cancer treatment specifically are 
currently available. Data from the TNMplot database 
(https://tnmplot.com) indicates that MD2 is overexpressed 
in human HCC tissues compared with normal liver tissues. 
Furthermore, the data of a 5-year analysis from the Kaplan-
Meier plotter database (https://kmplot.com/analysis/index.
php) shows that high expression of MD2 in tumor tissues 
is associated with poor prognosis of HCC. Although the 
role of MD2 in HCC is still unclear, these data point to the 
intriguing possibility that MD2 might play a role in HCC.

This study aims to evaluate the precise mechanisms of 
MD2 on the invasion and migration of HCC. Our findings 
indicate that MD2 is involved in the migration and invasion 
of HCC cells, and its mechanism may be related to the 
regulation of the epidermal growth factor receptor (EGFR) 
signaling pathway. We present the following article in 
accordance with the MDAR reporting checklist (available at 
https://dx.doi.org/10.21037/jgo-21-362).

Methods

Cell culture

Human hepatoma carc inoma ce l l  l ines  (Hep3B, 
HepG2, HCCLM3, and Huh7) and normal hepatocyte 
(HL7702) were obtained from the National Collection of 
Authenticated Cell Cultures (NSTI, Shanghai, China), 
and cultured in RPMI-1640 (Gibco, Grand Island, USA) 
supplemented with 10% fetal bovine serum (Gibco) and 1% 
penicillin-streptomycin (Invitrogen, Beijing, China) at 37 ℃ 
in a 5% CO2 cell incubator.

siRNA transfections

Cells were transfected with 4–5 ng/mL siRNA against 
MD2 (GenePharma, Shanghai, China) and a negative 
con t ro l  (GenePharma ,  Shangha i ,  Ch ina )  u s ing 
Lipofectamine 3000 (Thermo Fisher Scientific, USA) 
for 24 h. Cells were then washed and cultured in fresh 
complete medium and the silencing efficiencies were 
detected by western blot and quantitative real-time PCR 
(qRT-PCR).

qRT-PCR analysis

RNA was isolated from each group as described in 
individual experiments using TRIzol (Invitrogen, cat. 
no. 15596026). cDNA was synthesized with 2–5 μg of 
RNA using a PrimeScript RT reagent kit (TaKaRa, 
Tokyo, Japan). Quantitative PCR was carried out using 
a SYBR® Premix Ex TaqTM II kit (TaKaRa, cat. no. 
RR820A). The mRNA levels of MD2 (forward primer: 
5'-TGCCAGAAGACCGTGTACC-3', reverse primer: 
5'-TTTGCAGTAGAACTCCCCGTG-3'), Vimentin (forward 
primer: 5'-GACGCCATCAACACCGAGTT-3', reverse primer: 
5'-CTTTGTCGTTGGTTAGCTGGT-3'), N-cadherin (forward 
primer: 5'-AGCTCCATTCCGACTTAGACA-3'; reverse 
primer: 5'-CAGCCTGAGCACGAAGAGTG-3'), Snail (forward 
primer: 5'- TGTGACAAGGAATATGTGAGCC-3', reverse 
primer: 5'-TGAGCCCTCAGATTTGACCTG-3'), E-cadherin 
(forward primer: 5'-ATTTTTCCCTCGACACCCGAT-3', 
reverse primer: 5'-TCCCAGGCGTAGACCAAGA-3'), Occludin 
(forward primer: 5'-ACAAGCGGTTTTATCCAGAGTC-3', 
reverse primer: 5'- GTCATCCACAGGCGAAGTTAAT-3'), and 
GAPDH (forward primer: 5'-TGTGGGCATCAATGGATTTGG-3'; 
reverse primer: 5'-ACACCATGTATTCCGGGTCAAT-3') were 
quantified using the LightCycle* 480 II (Roche Diagnostic, 
QC, Canada).

https://tnmplot.com
https://kmplot.com/analysis/index.php
https://kmplot.com/analysis/index.php
https://dx.doi.org/10.21037/jgo-21-362
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Western blot analysis

Lysates of total cells were extracted as described in individual 
experiments using lysis buffer with protease inhibitor, and 
the total protein concentration was analyzed using a BCA 
Protein Assay Kit (Beyotime, #P0012, Shanghai, China) 
according to the manufacturer’s protocol. Samples were 
separated on 8–12% SDS-PAGE gels and transferred to 
PVDF membranes (Millipore, IPVH00010, USA), and 
subsequently blocked with 5% non-fat dry milk for 1.5 h  
at room temperature and incubated overnight at 4 ℃  
with appropriate primary antibodies: anti-MD2 (1:3,000, 
#ab24182, Abcam), E-cadherin (1:3,000, #20874-1-AP, 
Proteintech), Occludin (1:3,000, #27260-1-AP, Proteintech), 
Viment in  (1 :3 ,000 ,  #10366-1-AP,  Prote in tech) , 
Snail (1:3,000, #13099-1-AP, Proteintech), p-EGFR  
(F-3) (1:3,000, #sc377547, Santa Cruz), EGFR (1:3,000, 
#sc373746, Santa Cruz), p-Src (Y419) (1:1,000, #6943S, 
Huabio), Src (1:3,000, #2109, Cell Signaling), p-IκB-α  
(B-9) (1:1,000, #sc8404, Santa Cruz), p-p65 (1:3,000, 
#3033, Cell Signaling), p-AKT (Ser473) (1:3,000, #4060, 
Cell Signaling), AKT (1:3,000, #4685, Cell Signaling), and 
GAPDH (1:3,000, #6004-1-Ig, Proteintech). Horseradish 
peroxidase-conjugated goat anti-rabbit or anti-mouse 
antibodies were used as secondary antibodies. Protein 
signals were visualized using a BeyoECL Plus kit (Beyotime, 
#P0018, Shanghai, China) and quantified by ChemiDoc 
XRS+ software (Bio-Rad, USA).

Wound healing assay

Cells were seeded and transfected with siRNA against MD2 
and a negative control. Cells were allowed to reach 70–80% 
confluence, and were then starved for 24 h. The cells were 
subsequently wounded with a sterile plastic tip and cultured 
in serum-free medium. Cell migration was monitored for 
24 h using microscopy (Nikon, Tokyo, Japan).

Transwell assay

Cells were transfected with siRNA against MD2 and 
a negative control and plated on top of a thick layer of 
Matrigel in transwell chambers (BD Biosciences, USA). 
After culturing for 18 hours, non-invasive cells on the upper 
surface of filters were removed completely. Invasive cells 
that adhered to the lower surface of the filter were rinsed 
with phosphate buffered saline (PBS), fixed with methanol, 
stained with 0.05% crystal violet, and counted.

Cell viability assay

Cell counting kit 8 (CCK8) assay was used to determine 
cell viability. Cells (5×103 cells/well) were transfected with 
siRNA against MD2 and a negative control, laid out in  
96-well plates, and incubated for 24, 48, and 72 h. Next, the 
cell medium was removed and CCK8 reagent was added 
(diluted with the medium at 1:10), and incubated at 37 ℃ for 
30 min. The absorbance was measured at 595 nm using an 
enzyme-linked immunosorbent assay (ELISA) microplate 
reader.

Colony formation assay

Cells (5×104 cells/well) were transfected with siRNA against 
MD2 or a negative control, and seeded in six-well plates for 
5 days. During this period, the medium was renewed every 
3 days. Colonies were fixed with 4% paraformaldehyde 
for 15 min and stained with 0.05% crystal violet at room 
temperature for 15 min. Images were obtained using a 
Nikon camera (Nikon, Tokyo, Japan).

Statistical analysis

All experiments were performed at least in triplicate. 
Data were analysed using GraphPad Prism Version 9.0.0 
(GraphPad Software Inc., La Jolla, CA, USA). Values were 
presented as means ± standard deviation (SD). Statistical 
significance was evaluated using one-way analysis of 
variance (ANOVA) followed by Tukey’s test. A P value of 
<0.05 was considered to be statistically significant.

Results

MD2 was highly expressed in HCC and was associated 
with poor prognosis

To investigate the relationship between MD2 and HCC, we 
first analyzed the expression of MD2 in hepatoma carcinoma 
using the TNMplot database, and found that the MD2 gene 
(LY96) was significantly higher in HCC tumor tissues than 
in normal liver tissues (Figure 1A). Next, we detected the 
mRNA level of MD2 in several HCC cell lines, and obtained 
the same results as above; that is, that MD2 was higher in 
HCC cell lines (Hep3B, HepG2, HCCLM3, and Huh7) than 
in normal liver cell line (HL7702) (Figure 1B). Furthermore, 
we analyzed the prognosis via the Kaplan-Meier plotter 
database, and found that the 5-year survival rate of patients 
with lower MD2 expression was higher than those with 
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higher MD2 expression (Figure 1C). These results indicated 
that MD2 was highly expressed in hepatoma carcinoma and 
was associated with poor prognosis.

Silencing of MD2 inhibited migration and invasion of 
HCC cells

To explore the role and function of MD2 in HCC, we 
examined migration and invasion, which are important 
causes of tumor recurrence and metastasis, by silencing 
MD2 (Figure 2). First, we inhibited the expression of 
MD2 in HepG2 and HCCLM3 using three siRNAs, 
and investigated its efficiency to select the best one  
(Figure 2A,2B,2E,2F). Wound healing and transwell assays 
showed that MD2 silencing significantly inhibited cell 
migration and invasion of HepG2 cells (Figure 2C,2D) and 
HCCLM3 cells (Figure 2G,2H). These results indicated 
that silencing of MD2 prevented the progress of HCC by 
decreasing the cell migration and invasion ability.

Silencing of MD2 slightly inhibited the proliferation of 
HCC cells

We investigated the effect of MD2 on cell proliferation 
of HCC cells (Figure 3). CCK8 assay of HepG2 and 
HCCLM3 cells indicated that silencing of MD2 had no 
significant inhibitory effect on cell viability at 24 h and a 
slight inhibitory effect at 48 or 72 h (Figure 3A,3C). Colony 
formation assay showed that silencing of MD2 had little 

inhibitory effect on the number and size of cell colonies 
(Figure 3B,3D). These results indicated that MD2 silencing 
had little inhibitory effect on HCC cell proliferation.

Silencing of MD2 inhibited epithelial mesenchymal 
transformation (EMT) of HCC cells

EMT is an important process in tumor cell metastasis 
and invasion. To address the connection between MD2 
and EMT, we detected the expression levels of EMT 
markers. As expected, silencing of MD2 prevented the 
procession of EMT by increasing the protein and mRNA 
levels of E-cadherin and Occludin, but decreasing the 
levels of Vimentin, N-cadherin, and Snail in HepG2 cells  
(Figure 4A,4B). Similarly, MD2 silencing in HCCLM3 cells 
also increased the protein and mRNA levels expression 
of E-cadherin and Occludin, and decreased the levels of 
Vimentin, N-cadherin, and Snail (Figure 4C,4D). These 
results showed that MD2 silencing had a significant 
inhibitory effect on EMT in HCC cells.

Silencing of MD2 inhibited the activation of EGFR 
signaling

EGFR signaling plays a key role in regulating EMT 
transformation of tumor cells and promoting tumor 
metastasis. To investigate the influence of MD2 on the 
EGFR signaling pathway, we detected the phosphorylation 
changes of EGFR and its downstream molecules, Src and 
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AKT. The results demonstrated that the phosphorylation 
levels of EGFR, Src, and AKT were decreased in MD2-
silenced HepG2 and HCCLM3 cells (Figure 5A,5B). We 
then also inspected the changes of NF-κB that were reported 
as downstream of both EGFR and MD2 signals. In the same 
way, MD2 silencing inhibited the phosphorylation of IκB-α 
and p65 in HepG2 and HCCLM3 cells (Figure 5A,5B). 
These results showed that silencing of MD2 significantly 
inhibited the activation of EGFR signaling in HCC cells.

Discussion

HCC is one of the main causes of cancer-related mortality 
worldwide, and exhibits characteristics of rapid growth 
and high invasiveness (1,22). Therefore, it is important 
to investigate the mechanisms involved in HCC invasion 
and migration as well as explore novel therapeutic targets. 
Our study documented, for the first time, the effects and 
mechanisms of MD2 on the invasion and migration of 
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HCC via regulation of the EGFR pathway.
Previous studies have found that the MD2 and TLR4 

signaling pathways play an important role in acute 
inflammation (23,24). Our previous research also identified 
a crucial role of these pathways in some chronic diseases, 
such as diabetes (25,26), obesity (27,28), etc. Studies in 
recent years have highlighted the critical function of 
TLR4 signaling in cancer progression, invasion, migration, 
angiogenesis, and immune escape (12,29,30). The MD2/
TLR4 complex plays a carcinogenic effect by activating the 
TIRAP, PI3K/AKT, IKK-α, and NF-κB signals (31,32). 
The expression of TLR4 is significantly increased in a 
variety of cancers (33). High expression of TLR4 in tumor 
tissues is associated with poor survival in patients with 
various cancers (34,35). Although previous studies have 
demonstrated the potential therapeutic implications of 
inhibiting TLR4 pathway in cancer treatment, few studies 
have focused on the specific contribution of MD2, which 
has been known as an essential cofactor in TLR4 signaling 
for many years. As far as we know, the function of MD2 on 
liver cancer has never been studied.

In this study, we explored the expression levels of MD2 
using the TNMplot database, and found that the expression 
level of MD2 was higher in various tumor tissues as 
compared with paired normal tissues, especially in HCC. 
In addition, MD2 expression was upregulated in HCC cell 
lines, such as Hep3B, HepG2, HCCLM3, and Huh7, as 
compared with the human normal hepatocyte, HL7702. 
Survival analysis using The Human Protein Atlas database 
showed that higher expression of MD2 predicted poorer 
survival compared to lower expression. Furthermore, MD2 
silencing had a weak inhibitory effect on the proliferation of 
HCC cells, however exhibited an obvious inhibitory effect 
on cell migration and invasion. Therefore, the first finding 
of this study was the validation of the effect of MD2 on 
suppressing the invasion and migration of HCC cells.

We also demonstrated that MD2 inhibited the invasion 
and migration ability of HCC cells via regulation of the EMT 
process. EMT, which is characterized by the loss of apical 
basal cell polarity of epithelial and the mesenchymal cells, 
is the key link of tumor invasion, migration, and metastasis 
(36-38). Inhibition of EMT regulators is an important 
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approach in anticancer research. The multi-targeted tyrosine 
kinase inhibitors like sorafenib and regorafenib have an 
established place in the systemic treatment for advanced 
HCC. It was reported that sorafenib (39) and regorafenib (40)  
could suppress the EMT of HCC cells. The expression 
levels of various molecules also change during EMT. The 
expression of epithelial molecular markers E-cadherin and 
the occlusal protein (Occludin) were downregulated, while 
the expression of the E-cadherin transcription factor (Snail) 
was upregulated in the EMT process, which simultaneously 
acquired mesenchymal markers such as Vimentin and 
N-cadherin (41,42). E-cadherin mainly mediates cell-to-cell 
adhesion and participates widely in cell-to-cell connection, 
and is crucial for maintaining the integrity of normal 
epithelial cells. Snail can recognize and bind the promoter 
sequence of the E-cadherin gene, inhibit the transcription 
of E-cadherin, affect the adhesion between epithelial cells, 
and promote the occurrence of EMT (43). Occludin, one 
of the tight junction proteins between cells, can increase 
the transmembrane resistance of epithelial cells and prevent 
cell diffusion (44). Vimentin is abundantly expressed in 
numerous tumor types and is known as a canonical marker of 
EMT reprogramming, which is related to the acquisition of 
invasive and migratory tumor cell phenotypes (45). Serving 
as an indicator of ongoing EMT, N-cadherin is expressed 
in almost all interstitial cells and is associated with the 
development of various cancer types (46). As expected, the 
silencing of MD2 could block the EMT process of hepatoma 
cells, accompanied by the upregulation of E-cadherin and 
Occludin expression, and the downregulation of Snail, 
Vimentin, and N-cadherin expression.

As the expression product of the proto-oncogene 
CerbB-1, EGFR plays an important role in a variety of 
cancer processes, such as regulating the cell cycle, inducing 
angiogenesis, accelerating tumor invasion and metastasis, 
promoting tumor drug resistance, and so on (47). Also, 
studies have indicated that the EGFR signaling pathway is 
closely related to the occurrence of EMT in lung, ovarian, 
uterine, liver, and other cancers. EGFR can mediate the 
occurrence of tumor EMT through Src, AKT, TGF-β, NF-
κB, MAPK, and other signals (48,49). Src, NF-κB, and AKT 
are vital downstream molecules in the EGFR signaling 
pathway. Studies have demonstrated that Src inhibitors can 
significantly inhibit the EMT process of tumor cells, while 
Src activation can destroy cadherin-dependent intercellular 
adhesion and promote the interstitial phenotype of tumor 
cells (50). Increased expression and activity of NF-κB leads 
to the loss of E-cadherin through direct regulation of the 

target gene of Snail (51). Moreover, the activation of NF-
κB can upregulate the expression of Vimentin, thereby 
indirectly affecting the level of Occludin (52). AKT signal 
activation can directly upregulate the expression of EMT-
related transcription factors such as Snail, Slug, Twist, 
and ZEB, as well as inhibit the expression and promote 
the degradation of intracellular E-cadherin (53,54). In 
this study, we investigated these EMT-related signaling 
pathways to clarify the regulatory mechanism of MD2. 
We found that MD2 silencing could inhibit the activation 
of the EGFR signaling pathway via suppression of the 
phosphorylation of EGFR and its downstream molecules 
Src, NF-κB, and AKT.

Conclusions

In summary, our data indicated that silencing of MD2 could 
block the occurrence of EMT by inhibiting the EGFR 
signaling pathway, thereby inhibiting the migration and 
invasion of HCC cells. These findings reveal that MD2 
blockage may be a novel method in regulating the invasion 
and migration of HCC.
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