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Background: Liver metastasis of colorectal cancer (CRC) is an important cause of death from CRC, but 
its molecular mechanism is still unclear. In recent years, whole-exome sequencing has played an increasingly 
important role in the study of the occurrence and development of diseases, especially malignant tumors. Its 
high throughput and low cost advantages enable researchers to explore the pathogenic genes of diseases, and 
screen potential molecular markers and therapeutic targets from the level of genomics. 
Methods: This study collected the primary tumor tissues, matched paracancerous, normal tissues, and liver 
metastases of 4 CRC patients admitted to the Department of General Surgery of the First Affiliated Hospital 
of Soochow University, and performed high-depth whole-exome sequencing, with the sequencing depth of 
each sample reaching 123× on average, then filtered the sequencing data, compared them, and analyzed the 
bioinformatics data. 
Results: we found 8,565 single nucleotide variants (SNV) and 429 insertions/deletions (InDel) in the 
primary and hepatic lesion tissues, and the genes with the highest mutation frequency were titin (TTN), 
obscurin (OBSCN), and homeodomain-interacting protein kinase 2 (HIPK2). The Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the mutant genes was conducted, 
and it was found that the mutant genes were mainly concentrated in the cells, cell parts, and cellular process 
of GO. The results of KEGG pathway analysis showed that mutations were mainly distributed in circadian 
entrainment, insulin secretion, and glutamatergic synapse. Further, we identified 723 SNV and Indel genes 
with high frequency mutations including TTN, OBSCN, and hydrocephalus-inducing protein homolog 
(HYDIN) across all tissues of liver metastases. The GO analysis showed that the mutated genes in liver 
metastatic tissues were mainly concentrated in cell, cell part, and cellular process. The KEGG pathway 
analysis showed that high frequency mutation genes were focused on gastric acid secretion, bile secretion, 
and melanogenesis. 
Conclusions: This study found some candidate genes related to the occurrence of CRC and liver 
metastasis through whole-exome sequencing of relevant tissues in CRC patients with liver metastasis, which 
is expected to provide new markers and therapeutic targets for such patients. 
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Introduction

Colorectal cancer (CRC) is one of the most common 
digestive system malignancies in the world. In China, 
nearly one fifth of CRC patients have been found to have 
liver metastasis (LM) at their first diagnosis, and half of 
CRC patients have LM during the disease progression. 
The involvement of LM is a very important factor in the 
prognosis of CRC (1,2), it is caused by the interaction of 
multiple factors, and its clinical phenotype, characteristics, 
and molecular mechanism of metastasis are also currently 
hot topics in both clinical and basic research. The variation 
of tumor cell genome is an important factor for the 
occurrence and metastasis of tumors (3-5). In recent years, 
whole-exome sequencing has been widely used in the study 
of various diseases, especially in oncology research. Several 
functional genes associated with lung cancer targeting or 
immunotherapy have been identified in non-small cell 
lung carcinoma (NSCLC) (6,7). It has also been repeatedly 
confirmed by whole-exome sequencing that protein 53 
(P53), Kirsten rat sarcoma viral oncogene homolog (KRAS), 
adenomatous polyposis coli (APC), and other genes play an 
important role in the occurrence and progression of CRC 
(8,9). However, the genomic characteristics of LM from 
CRC are still unclear. Though there are many studies on 
the NGS of colorectal cancer, but relatively few studies on 
the gene detection of colorectal cancer with liver metastasis, 
and the data of exome sequencing of colorectal cancer with 
liver metastasis are even less in China.

In this study, primary tumor tissues, matched normal 
tissues, and liver metastasis specimens of 4 CRC patients 
with LM from the General Surgery Department of the First 
Affiliated Hospital of Soochow University were collected, 
and high-depth complete exome sequencing was performed 
to analyze the mutated genes, tumor mutation burden 
(TMB), molecular functions, and signal pathways related 
to CRC with LM. It is hoped that this study can deepen 
the understanding of CRC with LM and provide potential 
marker molecules and therapeutic targets for the diagnosis 
and treatment of CRC with LM. We present the following 
article in accordance with the MDAR reporting checklist 
(available at http://dx.doi.org/10.21037/jgo-21-9).

Methods

Participants and samples

CRC patient sample acquisition
We collected primary CRC tumor tissues, matched normal 
tissues, and liver metastatic tumor tissues of 4 patients from 
the Department of General Surgery of the First Affiliated 
Hospital of Soochow University from September 2019 to 
April 2020. Informed written consent was provided by all 
patients before inclusion in this study. Respective tumor tissue 
samples from a histologically confirmed adenocarcinoma by 
two molecular pathologists were matched with the inclusion 
criteria. This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was approved 
by the Ethics Committee of the First Affiliated Hospital of 
Soochow University (No. 2021-023).

DNA extraction 
The DNA was extracted from primary tumor tissues, liver 
metastatic tissues, and matched normal tissues using E.Z.N.A. 
Tissue DNA kit (Omega Bio‑Tek, Norcross, GA, USA) and 
QIAamp DNA FFPE Tissue kit (Qiagen Sciences, Venlo, 
Netherlands). The DNA extracted from normal tissues were 
used as germline DNA control. The samples with cancer cell 
populations were estimated by pathologists to ensure more 
than 75% of cells were cancer cells. A bioanalyzer (Agilent, 
Palo Alto, CA, USA) was used to assess DNA quantity.

Whole-exome sequencing and data processing

Sample genome DNA was fragmented using NEBNext 
dsDNA Fragmentase (NEB, Ipswich, MA, USA) followed 
by DNA ends repairing. End-repaired DNA fragments 
were detailed and ligated with the NEBNext adaptor (NEB, 
Ipswich, MA, USA). Biotinylated RNA library baits and 
magnetic beads were mixed with the barcoded library for 
selection of targeted regions using the SureSelect Human 
All Exon V6 Kit (Agilent Technologies, Palo Alto, CA, 
USA). The captured sequences were further amplified for 
150 bp paired-end sequencing in Illumina X-ten system 
(Illumina, San Diego, CA, USA).
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Somatic single nucleotide variant and insertion/deletion 
identification 

To identify somatic single nucleotide variants (SNVs) and 
insertion/deletions (InDels), the Burrows-Wheeler Aligner 
(BWA) (10) was used to align the clean reads from each 
sample against the human reference genome (GRCh38). 
The picard tool (http://picard.sourceforge.net/index.
shtml) removed the read duplicates derived from library 
polymerase chain reaction (PCR). Somatic SNV and InDel 
calling was processed for multi-sample by MuTect (https://
software.broadinstitute.org/cancer/cga/mutect) (11). 
Tumor mutation burden (TMB) is calculated as the number 
of somatic mutations per million bases (MB), including 

somatic single nucleotide variants (SNVs) and insertion/
deletions (InDels).

SNV

The gene sets screened were used for functional annotation 
analysis using in-house script, which consisted of the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (12) and 
Gene Ontology (GO) (13) database. The significance of 
gene group enrichment was defined by a modified Fisher’s 
exact test and a P value <0.05 was considered to indicate a 
statistically significant difference.

Statistical analyses 

The software SPSS (IBM Corp., Armonk, NY, USA) (14) 
was used to analyze all the correlated biological and clinical 
variables.

Results

Participant characteristics 

The mean age of the 4 CRC patients with LM was  
64.5 years (range, 46–77 years), and included 3 males and 
1 female. All 4 were diagnosed with adenocarcinoma, 
and did not receive adjuvant chemoradiotherapy before 
Surgery. The tumor stage of 4 participants were stage IV. 
Half (n=2) of them were histological grade 2 and another 2 
were histological grade 3. All 4 participants had lymphatic 
invasion and perineural invasion. The carcinoembryonic 
antigen (CEA) was increased in all 4 participants (Table 1).

Whole-exome sequencing 

We collected the primary tumor tissues,  matched 
paracancerous normal tissues, and LMs of 4 patients 
admitted to the Department of General Surgery of the First 
Affiliated Hospital of Soochow University, and performed 
high-depth whole-exome sequencing, with the sequencing 
depth of each sample reaching 123× on average (Table S1).

Identification of somatic single nucleotide 
polymorphisms and InDels
The normal tissue samples data of all participants 
matched the original site of cancer tissue samples data. 
To compare the LMs sample data analysis, we took the 
first participants’ normal tissue and named it CRC01C 
(CRCO1 CONTROL), the original cancer organization 

Table 1 Clinicopathological participant characteristics 

Characteristics No. of cases [%] 

Total number 

Age, years, mean [range] 64.5 [46–77] 

Gender 

Male 3 [75] 

Female 1 [25] 

Pathological diagnosis 

Adenocarcinoma 4 [100] 

Tumor stage at diagnosis 

III 0 

IV 4 [100] 

Histological grade 

Grade 2 2 [50] 

Grade 3 2 [50] 

Vascular invasion 

Yes 2 [50] 

No 2 [50] 

Lymphatic invasion 

Yes 4 [100] 

No 0 

Perineural invasion 

Yes 2 [50] 

No 2 [50] 

CEA value at diagnosis 

Normal 0 

Increased 4 [100] 

https://software.broadinstitute.org/cancer/cga/mutect
https://software.broadinstitute.org/cancer/cga/mutect
https://cdn.amegroups.cn/static/public/JGO-21-9-supplementary.pdf
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was named CRC01CvsT (CRCO1 CONTROL vs. 
tumor), LMs sample was named CRC01CvsLM (CRCO1 
CONTROL vs. liver metastasis), and then named the 
rest of the participant samples in the same way. By 
filtering the sequencing comparing and analyzing the 
data, 8,565 SNVs and 429 Indels were detected across all 
samples; CRC04CvsT had the largest number of SNVs 
(5,940), followed by CRC01CvsLM (1,094) (Table S2). 
Significantly mutated genes (SMG) are those genes whose 
mutation frequency is significantly higher than those in the 
background. Generally, differences of somatic SNV and 
InDel are analyzed comprehensively. MuSiC (The Genome 

Institute, Washington University, USA) software (15)  
was used to search for genes with higher mutation 
frequency in tumor samples (compared with control 
samples). A significantly mutated gene (SMG) test was 
performed for each type of mutation, whose test method 
was convolution test (CT). We found that the genes with 
the highest frequency of mutation were titin (TTN), 
obscurin (OBSCN), and homeodomain-interacting protein 
kinase 2 (HIPK2). We identified the 30 genes with the 
highest frequency of mutations. We also calculated the 
TMB of each sample respectively on the average TMB over 
16 mutations per MB (5–60 mutations/MB) (Figure 1).
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KEGG and GO analysis
We conducted GO and KEGG pathway analysis of the 
mutant genes, revealing that the mutant genes were mainly 
concentrated in the cells, cell parts, and cellular process 

of GO (Figure 2). Results of KEGG pathway analysis 
showed that mutations were mainly distributed in circadian 
entrainment, insulin secretion, and glutamatergic synapse 
(Figure 3).
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Figure 2 GO analysis histogram of the mutated genes of all samples. GO, Gene Ontology.
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Gene mutation and KEGG and GO analysis in LM samples

We further analyzed the high frequency mutated genes 
of LMs, which were TTN, OBSCN and hydrocephalus-
inducing protein homolog (HYDIN) (Figure 4). The GO 
analysis showed that the mutated genes in LM tissues were 
mainly concentrated in the cell, cell parts, and cellular 
process (Figure 5). The KEGG pathway analysis showed 
that high frequency mutation genes were focused on gastric 
acid secretion, bile secretion, and melanogenesis (Figure 6).

Discussion

Tumor metastasis is an important factor in tumor 
progression, and distant metastasis is often the main reason 
for tumor treatment failure. The process of LM of CRC is 
extremely complex, involving many tumor-related molecules, 
which are induced and regulated by their respective specific 
signaling pathways. With the continuous progress of all 
kinds of research techniques in recent years, a growing 
body of evidence has shown that tumor development 
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Figure 6 KEGG bubble diagram of liver metastases from colorectal cancer. KEGG, Kyoto Encyclopedia of Genes and Genomes.

and metastasis are related to the cancer genome (16), 
transcriptome (17), epigenetics (18), proteome (19), 
metabolome (20), and tumor microenvironment (21) 
interaction cross-regulation of a dynamic complex process. 

This study collected the primary tumor tissues, matched 
paracancerous normal tissues, and metastatic tissues of 
4 patients admitted to the General Surgery Department 
of the First Affiliated Hospital of Soochow University, 
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and conducted high-depth whole-exome sequencing, in 
an attempt to explore the molecular mechanism of CRC 
LM from the genomic level. We performed an average 
sequencing depth of 123× per sample. By filtering, 
comparing, and analyzing the data, we identified 8,565 
SNVs and 429 Indels in primary and hepatic metastases, 
and we found that the genes with the highest frequency of 
mutation were TTN, OBSCN, HIPK2, and HYDIN. The 
TTN gene was the most frequently mutated gene and had 
mutations in all 4 participants with LM. The TTN gene is 
known to encode rhabdomyin, and mutations in this gene are 
also associated with familial hypertrophic cardiomyopathy 
(HCM) 9 (22). It has also been identified as a chromosomal 
structural protein, and TTN has been found to promote 
bone metastasis in breast cancer (23). We speculated that 
variation of TTN might lead to chromosome instability 
and thus promote the occurrence and metastasis of tumors. 
The OBSCN gene is over 150 kb long and contains over 
80 exons encoding a protein of approximately 720 kDa that 
belongs to the sarcomeric signaling protein family (24,25). 
It is an important signaling protein that is involved in the 
modulation of multiple cellular signals. We hypothesized 
that OBSCN mutation might lead to abnormal intracellular 
signaling pathway transduction that catalyzed changes in cell 
function.

Due to the small number of patients with liver metastasis 
of colorectal cancer, it is difficult to obtain appropriate 
tissue samples of liver metastasis of colorectal cancer for 
sequencing. We will also increase the number of samples 
of liver metastasis of colorectal cancer for total exon 
sequencing in the future work to obtain more data. And due 
to financial constraints, this study failed to combine with 
other omics studies such as transcriptome and proteomics. 
We will try to address these issues in the future to further 
explore the molecular mechanism of CRC LM.

Conclusions

In this study, we found some candidate genes related to 
the occurrence of CRC and LM through whole-exome 
sequencing of relevant tissues in CRC patients with LM. 
These findings are expected to provide us with new markers 
and therapeutic targets for CRC patients with LM.
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Table S2 The single nucleotide variants (SNV) and insertions/
deletions (InDel) numbers of all samples were counted

Sample name SNV number InDel number

CRC01CvsLM 1,094 326

CRC01CvsT 168 9

CRC02CvsT 303 19

CRC02CvsLM 300 17

CRC03CvsT 324 12

CRC03CvsLM 170 8

CRC04CvsLM 266 20

CRC04CvsT 5,940 18


