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Introduction

Biliary tract cancers (BTC) is a group of rare and 
aggressive malignancies arising from the epithelium of 
the biliary duct system. They are classified based on 
their anatomical site in the biliary tree [intrahepatic 
c h o l a n g i o c a r c i n o m a  ( I H C C )  o r  e x t r a h e p a t i c 
cholangiocarcinoma (EHCC)] or gallbladder cancer (GBC) 
(Figure 1). IHCC is the most common BTC and the 
second most common hepatic malignancy, accounting for 
10–20% of all primary hepatic malignancies (1,2). Owing 
to the insidious nature of this group of cancers, they are 
usually diagnosed at an advanced stage and carry a dismal 

prognosis. Surgery is potentially curative in early stage 
disease. In cases of advanced and metastatic disease, the 
current standard of care is systemic chemotherapy with 
gemcitabine and cisplatin. Clinical response rates to these 
cytotoxic chemotherapies are low, with a 5-year survival of 
less than 10% for all three BTC subtypes. In recent years, 
we have made strides in our understanding of the disease 
biology, as well as advancements in diagnostic techniques 
and novel therapeutic strategies. Notably, the genomic 
revolution has ushered in an era of high-throughput and 
deep molecular profiling, which has provided invaluable 
insight into actionable molecular alterations, as well as 
their prognostic significance. We have also developed 
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a greater appreciation for the molecular heterogeneity 
across the BTC subtypes, realizing that these anatomically 
c l a s s i f i ed  subgroups  exh ib i t  d i s t inc t  molecu la r 
architectures. Considering this emerging knowledge, 
clinical trial design has steered away from the “one-
size-fits-all” mentality and has become more biomarker-
driven. Currently there are several ongoing clinical studies 
investigating the efficacy of targeted therapies aimed at 
populations that underwent biomarker selection. In this 
review, we will highlight actionable molecular targets and 
their novel targeted therapeutics in current clinical trials.

Epidemiology

The inc idence of  BTC var ies  by  geography and 
demographics, likely due to distinct environmental risk 
factors and genetic predisposition. Though BTCs are 
traditionally more common in Asian countries, their 
incidence has been rising in Western countries in recent 
decades (3). Though it is a rare disease, the global incidence 
is rising. Chronic inflammation and bile stasis in the biliary 
tract are thought to be major risk factors underlying the 
pathogenesis of these cancers. Specific risk factors include 
primary sclerosing cholangitis, liver fluke (Clonorchis, 
Opisthorchis) infection, hepatitis B and C infections, 
cholelithiasis or choledocholithiasis, cirrhosis, alcohol, 
smoking, and fatty liver disease (3,4). 

Current management

Overall, the 5-year survival rate of BTCs is extremely low 
(10% for CCAs and less than 5% for GBC) (5,6). Surgery 
is the only potentially curative modality but most patients 
are asymptomatic until late in the disease course and 
present with locally advanced or metastatic disease. Thus, 
only 10–15% of BTCs are amenable to surgery at initial 
presentation (7). Even though improved surgical techniques 
and better patient selection based on more advanced 
radiologic techniques have resulted in better tumor 
resection rates, the recurrence rates of these aggressive 
cancers remain high at 50–60% (7,8). The role of adjuvant 
therapy is poorly-defined and standard regimen is unclear 
due to the relative rarity of this disease which hinders large 
scale prospective studies (9,10). Therefore, the benefit of 
adjuvant treatment is commonly appraised from meta-
analyses of multiple small retrospective studies that usually 
include more than one, if not all, subtypes of BTC. To 
more clearly determine the role of adjuvant treatment, two 
phase III randomized controlled trials are currently ongoing 
in the Europe to determine the role of adjuvant gemcitabine 
plus cisplatin (ACTICCA-1 trial, NCT02170090) or 
oxaliplatin (NCT01313377) versus observation for patients 
with resected BTC. Before results from these trials are 
available, current NCCN guidelines recommend adjuvant 
fluoropyrimidine or gemcitabine-based chemotherapy with 
consideration of radiation for patients with node-positive 
disease or R1/R2 resections.

For patients presenting with unresectable BTCs (locally 
advanced, recurrent, or metastatic), the current standard 
first-line therapy is a combination of gemcitabine and 
cisplatin. This regimen was established by the ABC-02  
trial, the largest randomized phase III study to date, which 
showed a survival benefit of the combination as opposed 
to gemcitabine alone (11.7 vs. 9 months) (11). Other 
chemotherapy combinations (e.g., oxaliplatin, 5-FU, 
capecitabine, irinotecan) have demonstrated only marginal 
improvements in survival (12). Targeted therapies such as 
anti-EGFR or anti-VEGF antibodies have so far struggled 
to succeed in phase I or II clinical trials. Performing 
randomized control trials (RCT) for advanced BTCs has 
proven challenging due to the rarity of these malignancies, 
lack of effective agents, potential high heterogeneity 
within this diagnostic entity, and possibly fundamental 
differences among the three BTC subtypes (IHCC, EHCC, 
and GBC). In fact, next generation sequencing (NGS) 
and transcriptomic analyses have revealed that these BTC 

Figure 1 Distinct molecular signatures of BTCs. Shown is 
a schematic of the biliary tract and gallbladder, along with 
common genetic aberrations seen in intrahepatic and extrahepatic 
cholangiocarcinoma, and GBC. Red font indicates targetable genes. 
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subtypes are molecularly distinct from one another, and 
therefore may respond differently to the same treatment 
strategy and should not be approached as a single entity for 
clinical trial design (13,14). To improve patient outcome, 
future clinical trial design must better stratify patients based 
on considerations of histologic and molecular subtypes, and 
allocate patients to the appropriate targeted agents driven 
by biomarkers that could predict treatment response. 

Genetic landscape

Before the advent of NGS, our knowledge of genetic 
aberra t ions  in  BTCs was  l imi ted  because  o lder 
methodologies restricted mutational profiling to a few select 
oncogenes or hotspots (15). That technology previously 
allowed us to identify key signaling pathways altered in 
BTCs, such as the EGFR and vascular endothelial growth 
factor receptor (VEGFR) pathways. Thus, many of the 
first generation BTC trials targeted EGFR and VEGFR, 
but these targeted agents ultimately proved ineffective at 
improving clinical outcome (12). NGS, which allows for 
characterization of an entire genetic landscape through 
gene panels, whole exome, or transcriptome sequencing, 
has led to the discovery of many novel actionable mutations 
in BTCs (15). Thus, pre-clinical and clinical studies have 
expanded from targeting well-established pathways like 
EGFR and VEGFR to promising, novel alterations.  

Recent studies employing NGS have shed light on 

distinctive molecular spectra across the BTC subtypes 
(13,14). FGFR2 gene fusions and mutations in IDH1/2 
are predominantly observed in IHCC. KRAS and HER2 
mutations are preferentially found in EHCC. Lastly, GBCs 
are enriched for mutations in EGFR, HER2, and PIK3CA. 
Figure 1 and Table 1 highlight these key genomic alterations 
along the biliary tract and gallbladder. Next, we will discuss 
key actionable aberrations in BTCs and the novel agents 
that target them in biomarker-driven clinical trials. 

Tyrosine kinase signaling

EGFR

The EGFR family comprises four tyrosine kinase receptors 
(ERBB1–4) that regulate cell proliferation, survival, 
angiogenesis, and invasion through ligand binding and 
subsequent activation of signal transduction cascades 
involving the MAPK pathway (Ras-Raf-MEK-ERK) 
and the PI3K/AKT pathway (33) (Figure 2). Aberrant 
activation of the EGFR pathway is a common oncogenic 
event in BTCs and is associated with tumor recurrence 
and worsened outcome (16,18,26,34). Of the EGFR family 
members, EGFR (ERBB1) and HER2 (ERBB2) are most 
commonly altered in BTCs. Overexpression of EGFR 
occurs in 11–27% of IHCC, 5–19% of EHCC (26), and 
12% in GBCs (35), whereas activating EGFR mutations are 
preferentially seen in GBC (4–18%), but rarely in CCAs 
(Table 1) (16,17). 

Table 1 Prevalence of key genetic alterations in biliary tract cancers

Variables IHCC (%) EHCC (%) GBC (%) References

Tyrosine kinase signaling

EGFR 4 3 4–18 (16,17)

HER2 1.5–3 11–18 10–16 (16,18-20)

KRAS 17–30 12–40 0–13 (16,17,19-21)

BRAF 4–7 3 1–6 (16,19,22,23)

PIK3CA 5–6 7–9 8–14 (19,21,24,25)

FGFR2 fusions 6–50 0–5 0–3 (17,19,26-29)

IDH pathway 10–28 0–7 0 (19,21,27,30-32)

Chromatin-remodeling genes

ARID1A 17 12 13 (19,27)

BAP1 11 8 0 (17,27)

PBRM1 8 5 7 (17,27)
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Given that EGFR activation regulates several cellular 
functions important for carcinogenesis and is one of the 
most altered pathways in BTCs, there was strong rationale 
to evaluate it as a therapeutic target. However, extensive 
clinical testing with EGFR inhibitors has failed to show a 
survival benefit in advanced BTCs. Although earlier single 
arm phase II trials suggested possible benefits of EGFR 
antagonists cetuximab and panitumumab either as single 
agents or in combination with chemotherapy (36-39), 
larger RCTs of erlotinib, cetuximab or panitumumab in 
combination with gemcitabine plus oxaliplatin failed to show 
a progression-free survival (PFS) or overall survival (OS) 
benefit over chemotherapy alone in advanced BTCs (40,41). 

Of note, almost all of these trials have been performed 
without stratifying patients by molecular signatures that 
could predict response to anti-EGFR agents. In fact, 
none has used EGFR genomic alterations as a biomarker. 
Additionally, lessons from the colorectal cancer world 
have informed us that KRAS mutations negate response 
to anti-EGFR therapy (42-44). However, only a few of 
the BTC trials have used KRAS status to stratify patients. 
A recent phase II trial stratified BTC patients based on 
KRAS status, but failed to demonstrate that KRAS status 
predicted the population most likely to benefit from anti-
EGFR therapy (45). Furthermore, two biomarker-driven 

trials that was restricted to KRAS wild-type patients failed 
to show a clinically significant improvement in PFS or OS 
using panitumumab combined with chemotherapy (46,47). 
These studies call into question the utility of KRAS status as 
a clinically relevant biomarker predictive of EGFR therapy 
response in BTC, as opposed to colon cancer. The relative 
importance of mutations in other EGFR pathway genes, 
such as BRAF, are being investigated as mechanisms of 
resistance to anti-EGFR agents (47,48). 

HER2

HER2 overexpression and amplification are predominantly 
seen in EHCC and GBCs (10–18% for both) and rarely in 
IHCC (Table 1) (16,19,20,26,34,35). Like EGFR-directed 
agents, similarly disappointing results came out of trials 
with HER2 antagonists (including trastuzumab, lapatinib, 
afatinib) combined with chemotherapy in advanced  
BTC (49-51). Currently, there is an ongoing phase II trial 
with trastuzumab aimed at a selected group of HER2-
positive BTC patients (Table 2). 

VEGF

VEGF is the ligand that binds VEGFR, which initiates 
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III trials are highlighted.
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signals to promote cancer growth and metastasis through 
stimulating angiogenesis. VEGF is overexpressed in 
BTCs and associated with enhanced metastasis, increased 
tumor recurrence, and worsened prognosis (34). Studies 
with antagonists of the VEGF pathway, including 
bevacizumab, cediranib, sorafenib have not yielded 
encouraging results (52-56). 

MAPK pathway

Aberrations in cell-surface receptors and their ligands 
(e.g., EGFR, VEGF) can lead to constitutive activation of 
downstream cascades, including the MAPK arm (RAS-RAF-
MEK-ERK, Figure 2). KRAS is a member of the RAS family 
and gain of function mutations in KRAS are one of the most 
common events in BTCs, with highest rates seen in EHCC, 
followed by IHCC, and lowest in GBC (16,17,19,20,57). 
KRAS is associated with lower median survival and 
perineural invasion (58). Its frequency also increases with 
disease stage (22). BRAF belongs to the RAF family of 
kinases that lie directly downstream of RAS (Figure 2). 
BRAF mutations are less frequent in BTCs (less than 10% 
across all subtypes) and are considered mutually exclusive 
with KRAS mutations (16,19,22,59). The most common 
BRAF mutation is V600E, but the mutational frequency 
is highly varied in BTCs ranging from 0–33% (60).  

The clinical significance of BRAF mutations is less well-
established, with one study demonstrated an association 
with advanced tumor stage, higher likelihood of lymph 
node involvement, and worsened survival (22). 

Targeting the MAPK pathway has remained a challenge. 
Recently, the phase I ABC-04 study of selumetinib, a MEK 
inhibitor, in combination with gemcitabine and cisplatin 
failed to show clinical benefit in in advanced or metastatic 
BTC (61). Even attempts to block multiple components 
of the MAPK pathway using multikinase inhibitors 
like sorafenib have not proved fruitful (62-65). These 
disappointing results are in stark contrast to melanomas, 
which frequently harbor the BRAF V600 mutations, where 
use of the BRAF inhibitors vemurafenib or dabrafenib has 
achieved a striking survival benefit (66-68). Recently, dual 
inhibition of BRAF with vemurafenib or dabrafenib and 
MEK with trametinib in BRAF V600-mutated melanoma 
patients has led to further survival improvements (69-71). 
Currently, there is an ongoing phase II trial with dabrafenib 
combined with trametinib for BRAF V600-mutated rare 
cancers including BTCs (Table 2). 

Multiple signaling pathways seem to be involved in the 
pathogenesis of BTCs, rendering the decision of which 
pathways to target challenging. Moreover, no oncogene 
addiction pathway has been pinpointed. Targeting single 
pathways either as monotherapy or in combination with 

Table 2 Biomarker-driven clinical trials of biliary tract cancers

Drug(s) Target Biomarker selection Phase NCT number

Trastuzumab HER2 HER2 II NCT02999672

Dabrafenib + trametinib BRAF, MEK BRAF V600E II NCT02034110

BGJ398 FGFR2 FGFR alterations II NCT02150967

BGJ398 FGFR2 FGFR alterations II NCT02160041

Ponatinib FGFR2 FGFR2 fusion II NCT02265341

Ponatinib FGFR2 FGFR alteration II NCT02272998

INCB054828 FGFR2 FGFR2 translocation II NCT02924376

Erdafitinib FGFR2 FGFR alteration II NCT02699606

ARQ087 FGFR2 FGFR alteration I/II NCT01752920

INCB054828 FGFR2 FGFR alteration I NCT02393248

AG-120 IDH1 IDH1 mutation III NCT02989857

AG-221 IDH2 IDH2 mutation I/II NCT02273739

Dasatinib Multiple kinases IDH1/2 mutation II NCT02428855

AG-120 IDH1 IDH1 mutation I NCT02073994
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chemotherapy has shown varying degrees of improvements 
in response rates, but these have not translated to clinically 
significant increases in PFS or OS. Currently, some clinical 
trials are using a multi-target approach by using multikinase 
inhibitors or a combinatorial approach with multiple agents 
aimed at different pathways (12,72). Results from studies 
using multikinase inhibitors regorafenib and pazopanib are 
anxiously awaited. 

Novel targets

Over the recent years, genomic profiling using NGS has 
revealed the presence of novel alterations in BTCs such 
as recurrent fusion events (FGFR2 and ROS1 fusions), 
somatic mutations in metabolic enzymes (IDH1 and 2)  
(17-19,21,23,26-31,57,73,74), and chromatin-remodeling 
genes (ARID1A, BAP1, PBRM1) (17,19,27). 

FGFR2 fusions

FGFR2 is a member of the fibroblast growth factor 
family of receptor tyrosine kinases that regulate cell 
proliferation, differentiation, apoptosis (75). Alterations in 
this pathway through activating mutations, amplifications, 
or chromosomal translocation have been implicated in 
malignant transformation (76). Chromosomal fusions 
occur between exons 1–19 of FGFR2 and various genomic 
partners (e.g., AHCYL1, BICC1, PARK2, KCTD1, MGEA5, 
TACC3, TXLNA) in BTCs (17,19,26-29). The resulting 
fusion protein undergoes ligand-independent dimerization 
and subsequent autophosphorylation, which leads to 
constitutive activation of downstream signaling pathways, 
such as MAPK (76) (Figure 2). The oncogenic potential of 
FGFR2 fusions has been demonstrated in vitro (23,28,77,78) 
and in vivo (28). Screening for fusions by massive parallel 
sequencing or FISH-based assays has revealed a wide range 
of IHCC (6–50%) containing FGFR2 fusions, whereas 
EHCC and GBC rarely do (Table 1). 

In preclinical studies, the presence of FGFR2 fusions 
seems to predict high sensitivity to FGFR2 inhibitors 
(23,28,73,77,78). This provided the catalyst to target the 
FGFR pathway specifically in tumors harboring these 
fusions. FGF pathway antagonists include small molecule 
tyrosine kinase inhibitors that act at the receptor level 
to suppress oncogenic signaling (28). Clinical efficacy of 
FGFR2 inhibitors is being investigated in biomarker-driven 
clinical trials aimed at patients harboring FGFR2 pathway 
alterations (Table 2). The pan-FGFR inhibitor BGJ398 has 

potent activity against FGFR1–3 and is under evaluation in 
advanced CCAs with FGFR genetic alterations in two phase 
II studies (Table 2). Preliminary results from one of the 
studies (NCT02150967) was recently reported. Amongst 
the 26 patients with advanced or metastatic CCA harboring 
FGFR2 fusions or other alterations, the disease control 
rate was 82% (79). The drug was well tolerated except for 
hyperphosphatemia. 

Ponatinib is an example of a non-selective pan-FGFR 
inhibitor that is far along in clinical development. In a 
preclinical study, treatment with ponatinib resulted in 
biochemical CA 19-9 response with tumor shrinkage in a 
patient with the FGFR-MGEA5 fusion (73). Another patient 
in the study with FGFR-TACC3I fusion whose disease had 
progressed on pazopanib (another non-selective FGFR 
inhibitor) was treated with ponatinib therapy, resulting 
in stabilization of disease (73). This preliminary evidence 
supported assessing the anti-tumor activity of ponatinib 
in clinical trials. Ponatinib is being investigated in a phase 
II trial of advanced BTCs harboring FGFR2 gene fusions 
detected by either NGS or FISH (NCT02265341, Table 2). 
Another ongoing phase II trial is assessing the efficacy of 
ponatinib in advanced malignancies including CCA with 
any FGFR aberrations (mutations, fusions, amplifications) 
(NCT02272998, Table 2). 

Other ongoing phase II studies include oral pan-
FGFR selective small molecular inhibitors INCB054828, 
erdafitinib (JNJ-42756493), ARQ087 (Table 2). Preclinical 
and phase I studies have suggested that these compounds 
have potent and selective anti-tumor activity against FGFR-
mutated cancers (80-83). A recently developed monoclonal 
antibody against FGFR2 (BAY1179470) showed tumor 
suppressive potential in tumors with high FGFR2 
expression (84). Phase I testing of this antibody just recently 
completed (NCT01881217). Another phase I trial with 
oral pan-FGFR inhibitor AZD4547 also just completed 
(NCT00979134).

IDH1/2

IDH1 and IDH2 encode metabolic enzymes that participate 
in the Krebs cycle. Mutations in IDH1 and IDH2 result in 
the accumulation of the oncometabolite 2-hydroxyglutarate, 
which affects cell differentiation, survival, as well as DNA 
methylation. The epigenetic alterations caused by mutations 
in IDH1/2 lead to a blockade of hepatocyte differentiation, 
causing an increase in hepatic progenitor cells, which 
eventually results in tumorigenesis (85). IDH mutations 
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have been seen in solid tumors, including gliomas, and 
recently identified in BTCs. They occur primarily in IHCC 
(10–28%) and rarely in EHCC and GBCs (19,21,27,30,31) 
(Table 1). The most common IDH1 and IDH2 mutations 
cluster at the hotspot codons 132 and 172, respectively (86). 
The prognostic significance of these mutations remains to 
be fully elucidated, as there is some conflicting data. Two 
studies have correlated IDH mutations with decreased 
survival in IHCC compared to wild-type cases (27,31). 
Another study failed to demonstrate an association between 
IDH mutation status and survival (32). In contrast, a large 
cohort of IHCC samples (n=326) showed IDH mutations 
were associated with longer time to recurrence (30).

The efficacy of pharmacologically targeting the mutant 
IDH enzymes has been demonstrated in other types of 
tumors. IDH1 inhibitor AGI-5198 slowed the growth of 
IDH-mutant glioma cells (87) and IDH2 inhibitor AGI-
6780 selectively inhibited the growth of leukemic cells 
carrying mutant IDH2/R140Q (30). The role of IDH 
inhibitors in IHCC is currently being investigated. AG-
120, an IDH1 inhibitor, has been shown to transiently 
stabilize disease progression in patients with IDH1-
mutant IHCC. The expansion phase is currently underway 
(NCT02073994, Table 2). AG-120 is also being tested in 
the ongoing phase III RCT “ClarIDHy” in patients with 
advanced or metastatic CCA carrying an IDH1 mutation 
(Table 2). A phase I/II trial with AG-221 (IDH2 inhibitor) 
has just completed. A recent study showed that a subset of 
IHCC tumors with IDH mutations are exquisitely sensitive 
to the multikinase inhibitor dasatinib (88). This evidence 
paved the way for designing a phase II trial using dasatinib 
in IHCC cases harboring mutations in IDH1 or 2 (Table 2). 
Other agents that have demonstrated preclinical efficacy 
and are now in phase I testing include BAY1436032 (IDH1 
inhibitor), IDH305 (IDH1 inhibitor), and AG-881 (IDH1/2 
inhibitor) (89).

ROS1

ROS1 kinase fusions between kinase domain of ROS and 
FIG have been found in 8.7% of CCAs (74). The resultant 
FIG-ROS1 fusion protein has oncogenic potential in 
vitro and in vivo and can be inhibited by pharmacological 
targeting (74,90). A phase II trial of crizotinib (ALK/ROS1 
inhibitor) in patients with ALK, MET, or ROS1 alterations 
is underway (Table 2). LDK378, a ALK/ROS1 inhibitor, is 
being investigated in ROS1-overexpressing advanced CCAs 
(Table 2). Entrectinib, another ALK/ROS1 inhibitor, is 

being tested in CCAs carrying ROS1 gene fusions. 

Conclusions

BTCs are highly aggressive tumors that carry a dismal 
prognosis. Historically, the BTC subtypes have been 
studied as a single entity. Application of NGS technologies 
has allowed for enhanced characterization of the distinct 
genetic landscapes in the various BTC subtypes. FGF 
and IDH pathway alterations are commonly seen in 
IHCC, whereas alterations in the EGFR-MAPK-PI3K 
pathway occur more frequently in EHCC and GBC. The 
molecular heterogeneity across these subtypes likely confers 
differential responses to various treatments. Thus, therapy 
should be customized based on mutational spectra. To 
optimize clinical trial design, targeted therapies should 
be matched to specific molecular alterations through 
patient biomarker selection. Past investigations into agents 
targeting receptor tyrosine kinase and MAPK pathways have 
not shown significant benefit over standard chemotherapy 
regimen. However, improvements in genetic profiling have 
unveiled novel actionable mutations, such as FGFR2 fusion 
proteins and mutated IDH1/2. Agents targeted against these 
newly discovered aberrations are being actively investigated 
in clinical trials and hold the promise of improving clinical 
outcomes in this devastating orphan disease.  
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