Intraoperative radiation therapy (IORT), the delivery of radiation at the time of surgery, has a long history in the annals of the clinical management of cancer patients. The earliest attempt to irradiate tumors intraoperatively dates back to 1909 when Carl Beck drew gastric and colon cancers to the abdominal incision to expose them to ionizing radiation (1). Unfortunately, these initial efforts were unsuccessful due to limitations of beam energy, dose rate, and equipment. Renewed interest in IORT in more modern times came about from the increasing clinical experience in the US and Japan using megavoltage beams in the 1970s and 1980s and the experimental studies in large animals in the 1980s that defined the tolerance limits of normal tissues to large doses of radiation administered as a single intraoperative fraction (2,3).

The distinct advantages of IORT are the ability to expose the tumor to a high dose of radiation while physically shielding or displacing adjacent critical normal structures away from the beam path, the ability to visualize the treatment field and limit set-up uncertainties, the higher biologic effectiveness of single-fraction radiation therapy, the logistical convenience of substantially reducing the number of treatments, and the potential increased radiosensitivity of oxygenated intact tumors or freshly resected tumor beds. Despite these theoretical and practical advantages, the widespread adoption of IORT has been stymied by the lack of conclusive evidence of tangible clinical benefit in randomized studies, the logistical challenges of transporting anesthetized patients to linear accelerators, and/or the additional costs involved with shielding operating rooms when the linear accelerator is relocated to the operating room.

In recent years, there has been a resurgence of interest in IORT due to the advent of mobile IORT platforms. These include the mobile linear accelerator units with in-built shielding mechanisms delivering electron beams, the flexible high-dose rate brachytherapy applicators using Ir-192, and the miniaturized kilovoltage X-ray sources. These technological advances coincided with the increasing interest in accelerated partial breast irradiation as a convenient, cost-effective and safe treatment alternative to full-dose conventional whole breast radiation therapy for select low-risk breast cancer patients. Therefore, the last decade has witnessed an explosion in the number of cancer centers with IORT capability, the treatment of patients with IORT worldwide, and the enrollment of patients on clinical trials evaluating IORT as a viable treatment strategy. In fact, there have been more patients enrolled on a multicenter randomized international trial of breast cancer treatment with IORT vs. whole breast radiation than in all of the previously reported randomized IORT studies in previous decades (4). In parallel with this resurgence in IORT interest spawned by technological advances, there have been advances in chemotherapeutic management of systemic disease that has made it increasingly important to achieve effective and durable control of the primary disease with local therapies, thus providing a shot in the arm for intensification of radiation treatment via techniques such as IORT.

The accompanying article by Ashman et al. reports the Mayo Clinic Scottsdale experience with preoperative chemoradiation therapy combined with a mobile electron accelerator IORT for locally advanced and borderline resectable pancreatic cancer patients (5). Among 48 patients treated between 2002 and 2010 with chemoradiation therapy with the intent of resection and IORT, 31 patients underwent an attempted resection. Sixteen of these patients were able to undergo a R0/R1 resection whereas one patient underwent an R2 resection and the remaining 14 patients did not undergo resection. Twenty eight of these thirty one operated patients received IORT. Patients who had R0/R1 resections (with IORT) had significantly better
median overall survival durations (23 vs. 10 months,
P=0.002) than those who had R2 resection or no resection
(with IORT). Since there were no patients without IORT
who were part of the study, it remains unclear what role
the IORT played in the survival outcomes achieved. It
also remains unclear whether the inability of nearly half
of all patients (16 of 31) to receive chemotherapy after
IORT may have adversely affected overall survival of these
patients. What might seem, on the surface, easier to discern
is whether the additional IORT improved local control?
While recognizing that comparisons to historical controls
are fraught with flaws and that assessment/reporting of
local control is particularly challenging in pancreatic cancer
patients, the reported local failure rate of 29% in unresected
patients who underwent IORT seems to compare favorably
to that reported for locally advanced pancreatic cancers
who do not undergo IORT. While this hints at a potential
local control benefit from escalated doses of radiation
to the retroperitoneal margin, given the competing risk
for frequent and rapid metastatic dissemination of these
aggressive tumors, it is not surprising that a potential
local control benefit does not translate to a survival
benefit. Similar findings were reported in a recent multi-
institutional retrospective analysis of IORT for resected
pancreatic cancer patients where local control was excellent
but there was no improvement in overall survival (6).
Undoubtedly, controlling systemic disease is of paramount
importance in pancreatic cancer, but the unanswered
question is whether there may be a subset of patients who
might benefit from radiation dose escalation (with IORT
or otherwise). Parenthetically, the issue at hand is whether
we can select our patients better so as to (I) identify patients
with strictly borderline/locally advanced non-metastatic
disease a priori and treat them with chemoradiation therapy
and (II) intensify this local therapy in those patients who are
likely to have local tumor progression as the predominant
source of disease-related mortality?

Improvements in imaging techniques have significantly
enhanced our ability to identify the extent of locoregional
disease in the pancreas and stratify pancreatic cancer
into potentially resectable, borderline resectable, and
locally advanced. Nevertheless, accurate identification
of metastatic disease remains a challenge because of the
frequent occurrence of occult metastatic deposits in the
peritoneum that are not readily visualized non-
invasively by current imaging technology. We and others
have addressed this therapeutic dilemma by using induction
chemotherapy to either treat micrometastatic disease or
give occult metastatic disease an opportunity to manifest
itself on subsequent imaging (7,8). By excluding patients
with metastatic disease identified on repeat imaging
after chemotherapy, the pool of patients who undergo
consolidative chemoradiation therapy is enriched with
those who are most likely to have localized non-metastatic
disease. Concentrating a localized treatment modality on
these patients offers the possibility of these patients reaping
the maximum benefit of standard chemoradiation therapy.
With the advent of newer chemotherapeutic regimens
with greater systemic efficacy like FOLFIRINOX and
gemcitabine-abraxane, this sequencing of chemotherapy
followed by chemoradiation therapy may further select
patients for maximum benefit from chemoradiation therapy.

The next challenge is to further select these patients
for intensification of local therapy with a focal radiation
boost in those patients predicted to have a pattern
of failure where local relapse is the dominant site of
recurrence. Indeed, there is converging evidence that,
contrary to the widespread perception that all patients
with pancreatic cancer die as a result of distant metastatic
disease, complications of local tumor progression are a
significant source of disease-related mortality. Selecting
these patients for intensified radiation therapy is therefore
a viable therapeutic strategy if a biomarker of local-dominant
biology can be identified and validated. A recent autopsy
study of pancreatic cancer patients noted that intact Smad4
expression in tumors predicts for a predominantly local-
regional failure pattern (9). This correlation was also
observed in locally advanced pancreatic cancer patients
treated with chemotherapy followed by chemoradiation
therapy (10). This provides a rationale for potentially
personalizing and intensifying radiation therapy via a focal
boost in patients with intact Smad4.

In summary, the landscape of treatment strategies for
pancreatic cancer is evolving and improvements in systemic
therapy will necessitate improvements in local therapy as
well. Selecting patients for more intense radiation therapy
will require a better understanding of the biology of tumors
that tend to recur locally as opposed to distantly and the
deployment of techniques to achieve this intensification
of radiation therapy safely and effectively. Judicious use of
IORT for borderline resectable/unresectable pancreatic
cancer patients will ideally be confined to patients
who (I) receive induction chemotherapy, consolidation
chemoradiation, and surgical resection, where possible;
(II) undergo prospective collection of biomarkers (clinical,
radiographic, biochemical or molecular) predictive of local-
dominant biology; and (III) are monitored prospectively
for toxicity. Vigilance for unique toxicities of IORT, for
instance, was instrumental in identifying more pronounced
mammographic changes in the tumor bed (increased
calcifications and increased fat necrosis) as a result of
IORT following lumpectomy for breast cancer (11). We
also envision such studies requiring the concerted effort of a consortium of centers that have IORT capabilities and expertise with pancreatic cancer management, possibly under the auspices of the American College of Surgeons Oncology Group (ACOSOG) and/or the International Society of Intraoperative Radiation Therapy (ISIORT).

Acknowledgements

Disclosure: The authors declare no conflict of interest.

References

Cite this article as: Krishnan S, Ahmad M. Intensifying local radiotherapy for pancreatic cancer—who benefits and how do we select them? J Gastroint Oncol 2013;4(4):337-339. doi: 10.3978/j.issn.2078-6891.2013.027